RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2019-22] B.A./B.Sc. FIRST SEMESTER (July – December) 2019 Mid-Semester Examination, September 2019

: 16/09/2019 Date : 11 am – 12 noon Time

MATHEMATICS (Honours) Paper: I [CC 1]

Full Marks : 25

[Use a separate Answer Book for each group] <u>GROUP – A</u>

Answer any three from question nos. 1 to 5 :

Consider the following permutations in S_{5} . 1.

 $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \text{and} \ \gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{pmatrix}.$

b

Evalutate : $\alpha\beta$, $\alpha\gamma^2$, α^{-1} and $\gamma\alpha\gamma^{-1}$.

d

d

d

2. Let $G = \{a, b, c, d\}$ be a group under the binary operation *. Complete the following Cayley table for the

group:

	а	c	d	
	b			
	c			
				-
3. Let f : A	$\rightarrow Bb$	e a function. T	Then show that f	is injective iff $f(X \cap Y) = f(X) \cap f(Y)$ for all

с

nonempty subsets X and Y of A.

4. Find the remainder when $9.4^{24} + 2.9^{35}$ is divided by 5.

а

Let R and L be two equivalence relations on a set A such that $R \circ L = L \circ R$. Show that $R \circ L$ is 5. also an equivalence relation on A.

GROUP – B

Answer question no. 6 and any two from the rest :

If $x, y \in \mathbb{R}$ with y > 0, then prove that $\exists n \in \mathbb{N}$ such that ny > x. 6.

or

If $a, b \in \mathbb{R}$, then show that

i)
$$\max\{a, b\} = \frac{1}{2}\{a+b+|a-b|\}$$
 and

ii) $\min\{a,b\} = \frac{1}{2}\{a+b-|a-b|\}.$

[4]

[4]

[5]

[4]

[4]

 (3×4)

[4]

7.	Show that the intersection of a finite number of neighbourhoods of c is also a neighbourhood of c.	[4]
8.	Prove that a set W in \mathbb{R} is open if and only if $W=W^0$, where W^0 is the interior of W.	[4]
9.	Show that every infinite bounded subset of $\mathbb R$ has at least one limit point in $\mathbb R$.	[4]
10.	Show that the derived set of any set in \mathbb{R} is a closed set.	[4]

_____ × _____